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1. INTRODUCTION

The standard setup of quantum geometrical phases involbasétonianH that de-
pends on external parametér, H = H (&), which trace out a loog in {-space. The
adiabatic theorem states that if the system starts in amstigge|n) of H, and the’s
change slowly enough, then time evolution consists in loglonto the instantaneous
eigenstate oM, with a phase that, apart from the dynamical “energy timas'ticontri-
bution, includes a term that only depends®fi, 2]. The effect was anticipated in [3]
and further explored in [4, 5], before Berry’s formulatidm elegant description, due to
Simon [6], uses & (1) bundle ovei -space, and the holonomy of the parallel-transport
law for the phase dictated by Schroedinger’s equation.

We study, in this work, the problem of a quantum particle, akihis constrained to
move along a space curve, via a harmonic oscillator confipmigntial in the plane
normal to the curve, in the presence of cyclic deformatidrth® curve. It is a known
result that, under these conditions, the 1D hamiltoniath goaerns the motion along
the curve, involves the curvatureand torsiont of the curve, which can therefore be
thought of as external parameters, living in an infinite disienal parameter space. By
writing the time-dependent Schroedinger equation in thedioate system adapted to
the curve an additional term is produced, coming from thesfi@mation of the time
derivative, which depends not only on the shape of the cuntedbso, on its velocity
field — its role is to account for the inertial forces felt irethdapted frame. Inclusion
of this term results in an effective 1D hamiltonian that isimked on the tangent bundle
of the space of parameters — we use standard time-depeneltuathation theory to
compute the geometric phase in this case.

The structure of this short communication is as follows:ect®n 2 we review the
basics of geometric phases, and the confining potentiabapprto constrained quantum
dynamics. Then, in section 3, we explain the peculiarityheftase at hand (or, at least,
of our approach to it) and derivab initio a formula for a suitably defined geometric
phase, illustrating the general results with the exampbedéformed circle.



2. GEOMETRIC PHASES AND CONSTRAINED DYNAMICS

2.1. Geometric phases

We consider a hamiltoniaH (€ (t)), where the parameteés\(t) trace out a loofC
in {-space, starting and finishing at the origin, at timmes0 andt = T respectively.
The system described By is assumed to be, at= 0, in a nondegenerate eigenstate
In,&(0)) = |n) of H((0)) = H, with energyEn(& (0)) = En,

@(0)) = In) H[n) = En[n). (1)

The adiabatic theorem states that if the change of #is slow enough, in the time scale
set by the energy difference of neighboring eigenstates) the system “follows” the
hamiltonian, and its state is, up to a possible phase fati@instantaneous eigenstate

In,&(t)) of H(& (1)), .
@(t) = XVn & (1)), 2)

whereH(&(t))|n,&(t)) = En(&(t))|n, &(t)). Substitution of (2) in the time dependent
Schroedinger equation shows th&i{t) = —an(t) + yn(t), where the phasenp(t) =
fédr En(é(T)) is the expected dynamical one, and

t &
pit) =i [ drm @I nE@) =1 [ dErn e, @

is the geometrical phase — the latter form shows that it ig tieparametrization invari-
ant, and defines a connection id&l) bundle ovek -space. Using Stokes theorem, one
finds that, upon completing the excursion aldgthe system acquires a geometrical
phasen(C) given by

(C) =5 [deMdEBKY, Ki = ~2Im(aa(n E)(Geln.€)), ()

whereKX,‘B) are the components of the curvature associated with thesadmnection,
andSis any two-dimensional patch with as its boundary (see [1, 6, 2, 7]).

2.2. The confining potential approach to constrained dynanas

A quantum particle is forced to live on a space curve by medrsnoattractive
parabolic potentidlV in the plane normal to the curve — the corresponding haméton
is taken to beHg = —3 (37 + 87 + 92) +We (X, Y, 2), where(x,y, 7) are cartesian coordi-
nates in 3D euclidean space, ahd(x,y, 2) is, in general, a complicated function of its
arguments. Following the presentation in [8], we introdadapted coordinatés, a, 3),
wheresis arclength along the curve, with corresponding unit vediee t, andna, n3
are distances along the nornmaénd binormab of the curve. The length parameter
appears in the confining potenth(a, ) = We(X (s, a,B)) = (a?+ B2)/(2n?) and



controls the penetration depth of the particle in the anttB&nspace. Taking) < k1
guarantees that the adapted frame is well defined in therreghere the particle pen-
etrates with appreciable probability. We assume &} # 0. The hamiltonian for the
particle in the adapted frame is

02(G*/|G|)dp +W(a,B), (5)

He =
¢ 2«/\6

wherea, b range over the adapted coordinateg, is the euclidean metric in the adapted
coordinatesG? its inverse, and = (1— nak)? its determinant. The fact th& does
not depend os means that the tangential motion is classically free. Irathegpted frame
inner products between state vectors involve the nontrweasurey/G, which we opt
to absorb in a redefinition of the wavefunctioh,— W = GY/4®. The latter must be
accompanied by a similarity transformation of the hamiton

He — He = GY*H G 14 = o H »+Ho+0(n), (6)

where

K2

Ho= 30 +0D)+ 5@ 4B, Ho=—S(@-TL2-C. ()

andL = adg — 3dy is the (antihermitean) generator of rotations in the noipfede. Itis

clear that1, eigenstated;i.W = E.W, can be sought in the factorized fol(s, a, 8) =
x(a,B)y(s), with x(a, B) a simultaneous eigenket bif_, andL,

Hooxs! = (n+1x5",  Lx&” =ioxs”. (8)
The hamiltoniarH that the 1D wavefunctioy(s) sees then is [9]@’ = dsy, etc)

1 . 1
Hw:—éwg-l-IGTll/é,—'i‘é(IGT +02T2 )wa—ana, (9)

and the total energl. of the statdV is given byE. = n—?(n+1) + E.

3. DEFORMATIONS

3.1. Time dependent perturbation theory

In this section we consider the case of a curve that is cyficeformed in time,
and would like to identify the associated perturbation Hemmian. Our ultimate aim
is to compute the geometric phase accumulated during orle oy¢he perturbation,
and we will have to resort to time dependent perturbationrhéor that. It will prove
convenient to develop first a general formula for the phas¢hat we can later decide



which terms in the perturbation hamiltonian are relevarduo purposes. We consider
the time-dependent Schroedinger equatipn=é; |, etc)

Pt)=—i(H+AV(D))y(t), (10)

whereH does not depend on time andis small. Puttingy(t) = e ™HtU (t)y(0), (10)
gives . _
U(t)=—iAV(HU(t), (11)

whereV = &1ty (t)e Mt Integration and iteration results in

)= 1—iA / AtV (tz) — A / dt; / AV V() + 0%, (12)

Assume the system startstat 0, in an eigenstatg) of H, H|n) = E,|n), andV(0) =
V(T) = 0. The (assumed) adiabatic nature of the perturbation gtees then that
Y(T) =eMTU(T)|n) will be proportional ton), by a phase factor given by

(ny(T)) =e =T (nU(T)[n), (13)
or, substituting from (12),

iEnT T 2 T b Endti—to)
T (Q(T) =112 [ divin(ty) =A% Y [l [Nyt ),

(14)
whereEnk = En — Ex, Vik(t1) = (n|V(t1) k), and higher order terms have been neglected.
The quadratic term above contains information about thengdac phase, as well as
second order and the square of first order corrections totige A detailed treatment
of this integral is deferred to a lengthier publication, remtly in progress. For the
moment we consider the case of two paramefeand{, and assume, as it will turn out
to be the case below, that the perturbation hamiltonianmfipaot only on their values
but also on those of their time derivativéd/ (t) = & (t)Ve + § (t)V; + 1)V, + Z( WV,
whereVs, Vg, etc, are time independent operators. Then we conS|der driv@gystem

around a circle in thé- plane,§ = A (coswt — 1), { = A sinwt, with w < Ey, for all
k, as adiabaticity demands (notice that in the limit- 0 the conditior’/ (0) =V (T) =0
assumed above is satisfied). Having fixed the time depenadgntehe double integral
in (14) may be performed (with = 271/ w), and the result expanded in powerscof

giving

T (ny(T)) = —A22n > Enié (1M (Ve Ve ) + EncR(Ve Vo Vi Vo) )+
(15)

where the omited terms depend an The abovew-independent, contribution to the

phase we identify as times) the geometric phase. Dividing by the are¥? of the
circle traced out in thé - plane, we find for the curvature

-2 :
Keg = _Zkgn Enk (Im (Ve Vo) + EWRe(ankVZk ankvzk”)> - U9



The problem has been reduced now to the identification ofiapesdependeM; and
the velocity-dependeMé.

3.2. Shape dependent perturbations

An infinitesimal deformation of a curve(s) can be described by a vector fields)
defined over the curve, which specifies the velocity of eacltsopoints under the
deformation. To simplify a bit the analysis, we will concexté on an important class of
such vector fields, given by tHecally arclength preservingLAP) ones, which satisfy
t-v/ = 0. In terms of adapted frame components; ' t +v'n+\Pb, the LAP condition
becomes/’ — k" = 0. Consider now an infinitesimal LAP deformation of the form
r —r 4+ &v with ¢ < 1. Such a deformation brings along changes in the curvature
and torsionk — K +¢&Kg, T — T+ &Tg (the detailed expressions are not particularly
illuminating), so that the hamiltonia in (9) becomes -dependentd (&) = H 4 £Hg,
with

He = iargds+%(iaré+202rrg —%KKE) (17)

in the role of a shape-dependent perturbation.

3.3. Velocity dependent perturbations: the effect of inerial forces

In the previous section we saw how the change to the frametediap the curve,
and the subsequent similarity transformation by the squ@seof the measure, leads
to the simplified form (6) of the hamiltonian. However, if tabove change of coor-
dinates is time dependent, as is the case when the spaceisl®ig deformed, an
additional term arises that should be addeH¢pcoming from the transformation of the
time derivative in the time dependent Schroedinger eqnali@eed, under the change
of coordinateg(t,x!,x?,x3) — (t',yL,y2,y®), with t' =t andy' = y'(x;&(t)), the time
derivative transforms ag = oy + E(é‘y‘/af)d}ﬁ-, where we have assumed that the time

dependence is through a parameiér). The quantities! = —dy'/d¢ are the adapted
frame components of the velocity of a point with fixed adatedrdinates', as seen in
the ambient cartesian frame, and can be computed in ternhe oflocity fieldv(s) of
the curve itself. One then effects the similarity transfationu — 0 = GY*uG /4 to
find the time dependent Schroedinger equation obeyed bytoaled wavefunctiow,

oW = | (HC+EH5+iéG>W (18)

where, inHg, o should be replaced byiL (there is in fact an extra ter@%/4g, G~/
showing up but it can be shown to not contribute to the curegtu



3.4. An example: deformed circular loop

Take as undeformed curve a circle, wiklfs) = 1 and 7(s) = 0. For the normal

plane wavefunctions we choose the sta@fﬁ = |+) = (]10) £i|01)) /v/2, with H_»
eigenvalue 2 antl|+) = £|+). EQ. (9) then becomes

1., 1
~5¥s— g¥o = Eolis, (19)

with solutions @™ (s) = &™/v2m, and eigenvaluesE{” = (4n? — 1)/8,
m = 0,+1,+2,... Consequently, all but the ground state, are doubly degenera

(apart from theo = +1 degeneracy, common to all states). The correspondinglessc

3D states are thew™™ = x V(™ with

. 2 4nP-1
A = pe P lete BT = (20)
(p, @ denote the standard polar coordinates in the normal plaveeassume the particle
to be in the ground staten = 0, and consider the two-parameter deformation, in the
adapted framei(s) = (0,—1,0) + & (p~1sinps cosps 0) + {(0,0,cosps), p=1,2,.. .,
for which we find

He = %{(p2 —1)cog ps) H; = izap(p2 —1)(2sin(ps)ds+ pcos ps))

H; :ip’lsin(ps)derlzcos(ps) H; = op®cogps),

so that the sum in (16) only receives contributions flom+ p, leading to the expression
Kez = —0(p? —1)?/2p? for the curvature, which coincides with the result of [1@j f
p = 2 (notice the difference in the definition Kfby a factor of 2).
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