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1. INTRODUCTION

The standard setup of quantum geometrical phases involves ahamiltonianH that de-
pends on external parametersξ A, H = H(ξ ), which trace out a loopC in ξ -space. The
adiabatic theorem states that if the system starts in an eigenstate|n〉 of H, and theξ ’s
change slowly enough, then time evolution consists in locking onto the instantaneous
eigenstate ofH, with a phase that, apart from the dynamical “energy times time” contri-
bution, includes a term that only depends onC [1, 2]. The effect was anticipated in [3]
and further explored in [4, 5], before Berry’s formulation.An elegant description, due to
Simon [6], uses aU(1) bundle overξ -space, and the holonomy of the parallel-transport
law for the phase dictated by Schroedinger’s equation.

We study, in this work, the problem of a quantum particle, which is constrained to
move along a space curve, via a harmonic oscillator confiningpotential in the plane
normal to the curve, in the presence of cyclic deformations of the curve. It is a known
result that, under these conditions, the 1D hamiltonian that governs the motion along
the curve, involves the curvatureκ and torsionτ of the curve, which can therefore be
thought of as external parameters, living in an infinite dimensional parameter space. By
writing the time-dependent Schroedinger equation in the coordinate system adapted to
the curve an additional term is produced, coming from the transformation of the time
derivative, which depends not only on the shape of the curve but, also, on its velocity
field — its role is to account for the inertial forces felt in the adapted frame. Inclusion
of this term results in an effective 1D hamiltonian that is defined on the tangent bundle
of the space of parameters — we use standard time-dependent perturbation theory to
compute the geometric phase in this case.

The structure of this short communication is as follows: in section 2 we review the
basics of geometric phases, and the confining potential approach to constrained quantum
dynamics. Then, in section 3, we explain the peculiarity of the case at hand (or, at least,
of our approach to it) and deriveab initio a formula for a suitably defined geometric
phase, illustrating the general results with the example ofa deformed circle.



2. GEOMETRIC PHASES AND CONSTRAINED DYNAMICS

2.1. Geometric phases

We consider a hamiltonianH(ξ (t)), where the parametersξ A(t) trace out a loopC
in ξ -space, starting and finishing at the origin, at timest = 0 andt = T respectively.
The system described byH is assumed to be, att = 0, in a nondegenerate eigenstate
|n,ξ (0)〉 ≡ |n〉 of H(ξ (0))≡ H, with energyEn(ξ (0))≡ En,

|ψ(0)〉 = |n〉 H|n〉 = En|n〉 . (1)

The adiabatic theorem states that if the change of theξ ’s is slow enough, in the time scale
set by the energy difference of neighboring eigenstates, then the system “follows” the
hamiltonian, and its state is, up to a possible phase factor,the instantaneous eigenstate
|n,ξ (t)〉 of H(ξ (t)),

|ψ(t)〉 = eiδn(t)|n,ξ (t)〉 , (2)

whereH(ξ (t))|n,ξ (t)〉 = En(ξ (t))|n,ξ (t)〉. Substitution of (2) in the time dependent
Schroedinger equation shows thatδn(t) = −αn(t) + γn(t), where the phaseαn(t) =
∫ t

0 dτ En(ξ (τ)) is the expected dynamical one, and

γn(t) = i
∫ t

0
dτ 〈n,ξ (τ)| d

dτ
|n,ξ (τ)〉= i

∫ ξt

ξ0

dξ A〈n,ξ |∂ξ A|n,ξ 〉 , (3)

is the geometrical phase — the latter form shows that it is time reparametrization invari-
ant, and defines a connection in aU(1) bundle overξ -space. Using Stokes theorem, one
finds that, upon completing the excursion alongC, the system acquires a geometrical
phaseγn(C) given by

γn(C) =
1
2

∫

S
dξ Adξ BK(n)

AB , K(n)
AB ≡−2Im(∂A〈n,ξ |)(∂B|n,ξ 〉) , (4)

whereK(n)
AB are the components of the curvature associated with the above connection,

andS is any two-dimensional patch withC as its boundary (see [1, 6, 2, 7]).

2.2. The confining potential approach to constrained dynamics

A quantum particle is forced to live on a space curve by means of an attractive
parabolic potentialW in the plane normal to the curve — the corresponding hamiltonian
is taken to beHE = −1

2(∂ 2
x +∂ 2

y +∂ 2
z )+WE(x,y,z), where(x,y,z) are cartesian coordi-

nates in 3D euclidean space, andWE(x,y,z) is, in general, a complicated function of its
arguments. Following the presentation in [8], we introduceadapted coordinates(s,α,β ),
wheres is arclength along the curve, with corresponding unit vector ∂s≡ t, andηα, ηβ
are distances along the normaln and binormalb of the curve. The length parameterη
appears in the confining potentialW(α,β ) = WE(xi(s,α,β )) = (α2 + β 2)/(2η2) and



controls the penetration depth of the particle in the ambient 3D space. Takingη ≪ κ−1

guarantees that the adapted frame is well defined in the region where the particle pen-
etrates with appreciable probability. We assume thatκ(s) 6= 0. The hamiltonian for the
particle in the adapted frame is

Hc = − 1

2
√

|G|
∂a

(

Gab
√

|G|
)

∂b+W(α,β ) , (5)

wherea, b range over the adapted coordinates,Gab is the euclidean metric in the adapted
coordinates,Gab its inverse, andG = (1−ηακ)2 its determinant. The fact thatW does
not depend onsmeans that the tangential motion is classically free. In theadapted frame
inner products between state vectors involve the nontrivial measure

√
G, which we opt

to absorb in a redefinition of the wavefunction,Φ → Ψ = G1/4Φ. The latter must be
accompanied by a similarity transformation of the hamiltonian,

Hc → H̃c = G1/4HcG
−1/4 =

1
η2H−2+H0+O(η) , (6)

where

H−2 = −1
2
(∂ 2

α +∂ 2
β )+

1
2
(α2 +β 2) , H0 = −1

2
(∂s− τL)2− κ2

8
, (7)

andL = α∂β −β∂α is the (antihermitean) generator of rotations in the normalplane. It is
clear thatH̃c eigenstates,̃HcΨ = ẼcΨ, can be sought in the factorized formΨ(s,α,β ) =
χ(α,β )ψ(s), with χ(α,β ) a simultaneous eigenket ofH−2 andL,

H−2χ(n)
σ = (n+1)χ(n)

σ , Lχ(n)
σ = iσ χ(n)

σ . (8)

The hamiltonianH that the 1D wavefunctionψ(s) sees then is [9] (ψ ′ ≡ ∂sψ, etc.)

Hψ = −1
2

ψ ′′
σ + iστψ ′

σ +
1
2

(

iστ ′+σ2τ2− 1
4

κ2
)

ψσ = Eσ ψσ , (9)

and the total energỹEc of the stateΨ is given byẼc = η−2(n+1)+Eσ .

3. DEFORMATIONS

3.1. Time dependent perturbation theory

In this section we consider the case of a curve that is cyclically deformed in time,
and would like to identify the associated perturbation hamiltonian. Our ultimate aim
is to compute the geometric phase accumulated during one cycle of the perturbation,
and we will have to resort to time dependent perturbation theory for that. It will prove
convenient to develop first a general formula for the phase, so that we can later decide



which terms in the perturbation hamiltonian are relevant toour purposes. We consider
the time-dependent Schroedinger equation (ψ̇ ≡ ∂tψ, etc.)

ψ̇(t) = −i
(

H +λV(t)
)

ψ(t) , (10)

whereH does not depend on time andλ is small. Puttingψ(t) = e−iHtU(t)ψ(0), (10)
gives

U̇(t) = −iλṼ(t)U(t) , (11)

whereṼ ≡ eiHtV(t)e−iHt . Integration and iteration results in

U(t) = 1− iλ
∫ t

0
dt1Ṽ(t1)−λ 2

∫ t

0
dt1

∫ t1

0
dt2Ṽ(t1)Ṽ(t2)+O(λ 3) . (12)

Assume the system starts, att = 0, in an eigenstate|n〉 of H, H|n〉 = En|n〉, andV(0) =
V(T) = 0. The (assumed) adiabatic nature of the perturbation guarantees then that
ψ(T) = e−iHTU(T)|n〉 will be proportional to|n〉, by a phase factor given by

〈n|ψ(T)〉 = e−iEnT〈n|U(T)|n〉 , (13)

or, substituting from (12),

eiEnT〈n|ψ(T)〉 = 1− i λ
∫ T

0
dt1Vnn(t1)−λ 2∑

k

∫ T

0
dt1

∫ t1

0
dt2eiEnk(t1−t2)Vnk(t1)Vkn(t2) ,

(14)
whereEnk≡ En−Ek, Vnk(t1)≡ 〈n|V(t1)|k〉, and higher order terms have been neglected.
The quadratic term above contains information about the geometric phase, as well as
second order and the square of first order corrections to the energy. A detailed treatment
of this integral is deferred to a lengthier publication, currently in progress. For the
moment we consider the case of two parametersξ andζ , and assume, as it will turn out
to be the case below, that the perturbation hamiltonian depends not only on their values
but also on those of their time derivatives,λV(t) = ξ (t)Vξ + ξ̇ (t)Vξ̇ +ζ (t)Vζ + ζ̇ (t)Vζ̇ ,
whereVξ , Vξ̇ , etc., are time independent operators. Then we consider driving the system
around a circle in theξ -ζ plane,ξ = λ (cosωt −1), ζ = λ sinωt, with ω ≪ Enk, for all
k, as adiabaticity demands (notice that in the limitω → 0 the conditionV(0) =V(T) = 0
assumed above is satisfied). Having fixed the time dependenceof V, the double integral
in (14) may be performed (withT = 2π/ω), and the result expanded in powers ofω,
giving

eiEnT〈n|ψ(T)〉=−λ 22π i ∑
k6=n

E−2
nk

(

Im
(

Vξ nk
Vζ kn

)

+EnkRe
(

Vξ nk
Vζ̇ kn

−Vξ̇ nk
Vζ kn

)

)

+. . .

(15)
where the omited terms depend onω. The above,ω-independent, contribution to the
phase we identify as (i times) the geometric phase. Dividing by the areaπλ 2 of the
circle traced out in theξ -ζ plane, we find for the curvature

Kξζ = −2 ∑
k6=n

E−2
nk

(

Im
(

Vξ nk
Vζ kn

)

+EnkRe
(

Vξ nk
Vζ̇ kn

−Vξ̇ nk
Vζ kn

)

)

. (16)



The problem has been reduced now to the identification of the shape-dependentVξ and
the velocity-dependentVξ̇ .

3.2. Shape dependent perturbations

An infinitesimal deformation of a curver(s) can be described by a vector fieldv(s)
defined over the curve, which specifies the velocity of each ofits points under the
deformation. To simplify a bit the analysis, we will concentrate on an important class of
such vector fields, given by thelocally arclength preserving(LAP) ones, which satisfy
t ·v′ = 0. In terms of adapted frame components,v = vt t +vn n+vb b, the LAP condition
becomesvt ′ − κ vn = 0. Consider now an infinitesimal LAP deformation of the form
r → r + ξ v with ξ ≪ 1. Such a deformation brings along changes in the curvature
and torsion,κ → κ + ξ κξ , τ → τ + ξ τξ (the detailed expressions are not particularly
illuminating), so that the hamiltonianH in (9) becomesξ -dependent,H(ξ ) = H +ξHξ ,
with

Hξ = iστξ ∂s+
1
2

(

iστ ′ξ +2σ2ττξ −
1
2

κκξ
)

(17)

in the role of a shape-dependent perturbation.

3.3. Velocity dependent perturbations: the effect of inertial forces

In the previous section we saw how the change to the frame adapted to the curve,
and the subsequent similarity transformation by the squareroot of the measure, leads
to the simplified form (6) of the hamiltonian. However, if theabove change of coor-
dinates is time dependent, as is the case when the space curveis being deformed, an
additional term arises that should be added toH̃c, coming from the transformation of the
time derivative in the time dependent Schroedinger equation. Indeed, under the change
of coordinates(t,x1,x2,x3) → (t ′,y1,y2,y3), with t ′ = t and yi = yi(x;ξ (t)), the time
derivative transforms as∂t = ∂t ′ + ξ̇ (∂yi/∂ξ )∂yi , where we have assumed that the time
dependence is through a parameterξ (t). The quantitiesui = −∂yi/∂ξ are the adapted
frame components of the velocity of a point with fixed adaptedcoordinatesyi , as seen in
the ambient cartesian frame, and can be computed in terms of the velocity fieldv(s) of
the curve itself. One then effects the similarity transformationu → ũ≡ G1/4uG−1/4 to
find the time dependent Schroedinger equation obeyed by the rescaled wavefunctionΨ,

∂t ′Ψ = −i
(

H̃c +ξHξ + iξ̇ ũ
)

Ψ (18)

where, inHξ , σ should be replaced by−iL (there is in fact an extra termG1/4∂t ′G
−1/4

showing up but it can be shown to not contribute to the curvature).



3.4. An example: deformed circular loop

Take as undeformed curve a circle, withκ(s) = 1 and τ(s) = 0. For the normal

plane wavefunctions we choose the statesχ(1)
± ≡ |±〉 = (|10〉± i|01〉)/

√
2, with H−2

eigenvalue 2 andL|±〉 = ±|±〉. Eq. (9) then becomes

−1
2

ψ ′′
σ − 1

8
ψσ = Eσ ψσ , (19)

with solutions ψ(m)
σ (s) = eims/

√
2π , and eigenvaluesE(m)

σ = (4m2 − 1)/8,
m = 0,±1,±2, . . . Consequently, all but the ground state, are doubly degenerate
(apart from theσ = ±1 degeneracy, common to all states). The corresponding rescaled

3D states are thenΨ(1,m)
± = χ(1)

± ψ(m)
± with

χ(1)
± = ρe−ρ2/2e±iφ/

√
π , E(1,m)

± =
2

η2 +
4m2−1

8
(20)

(ρ,φ denote the standard polar coordinates in the normal plane).We assume the particle
to be in the ground state,m = 0, and consider the two-parameter deformation, in the
adapted frame,̃r(s) = (0,−1,0)+ξ (p−1sinps,cosps,0)+ζ (0,0,cosps), p = 1,2, . . .,
for which we find

Hξ =
1
4
(p2−1)cos(ps) Hζ =

i
2

σ p(p2−1)
(

2sin(ps)∂s+ pcos(ps)
)

Hξ̇ = ip−1sin(ps)∂s+
i
2

cos(ps) Hζ̇ = σ p2cos(ps) ,

so that the sum in (16) only receives contributions fromk=±p, leading to the expression
Kξζ = −σ(p2−1)2/2p2 for the curvature, which coincides with the result of [10], for
p = 2 (notice the difference in the definition ofK by a factor of 2).
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